Плазма крови: состав и функции

КРОВЬ. СОСТАВ КРОВИ И ЕЕ ФУНКЦИИ. ПЛАЗМА

Кровь – жидкая ткань организма, которая циркулирует в системе замкнутых сосудов, составляет от 5 до 9% массы тела человека (5-5,5л).

Кровь как и любая другая ткань представляет собой систему, в которой все элементы связаны гистогенетически и функционально, и подчиняются общим законам нейрогуморальной регуляции .

Развитие – из мезенхимы . Все клетки крови развиваются из общей полипотентной стволовой клетки, дифференциация которой в различные виды клеток крови определяется несколькими факторами:

а) микроокружением (ретикулярная ткань кроветворных органов);

б) гемопоэтинами.

Популяция клеток крови – это постоянно обновляющаяся система клеток, с коротким циклом развития, в которой зрелые формы являются конечными (погибающими) клетками.

Образование новых клеток крови и разрушение старых в физиологических условиях сбалансированы и следовательно поддерживается постоянство как количественного, так и качественного состава клеток крови.

ЁКровь состоит из двух основных компонентов:

а) межклеточного вещества (плазмы);

б) взвешенных в плазме форменных элементов.

Объем плазмы равен 55-60%, а форменных элементов 40-45%.

Функции крови

1. Транспортная,

2. Защитная,

3. Гомеостатическая,

4.Трофическая,

5. Дыхательная.

Транспортная и трофическая – перенос веществ, получаемых организмом с пищей, продуктов обмена, гормонов и других биологически активных веществ.

Дыхательная – доставка кислорода от легких к тканям и органам и удаление из них углекислого газа.

Защитная – обеспечение гуморального и клеточного иммунитета.

Гомеостатическая – поддерживает, вместе с нервной и эндокринной системами, постоянство внутренней среды организма, в том числе и иммунного гомеостаза.

Плазма крови

Плазма крови представляет коллоидную систему, которая состоит из воды(90-93%), органических (белки: альбумины, глобулины, фибриноген – около 7%) и другие органические и неорганические соединения (3%). Общая концентрация минеральных веществ в плазме крови составляет 0,9%; pH плазмы крови равно 7,36.

Белки плазмы:

1. Альбумины около 4%, связывают и переносят с

кровью целый ряд веществ;

2. Глобулины – около 1,1 – 3,1%, делятся на:

а) a – глобулины;

б) b – глобулины;

в) g – глобулины – содержат антитела;

3. Фибриноген – около 0,2-0,4% растворимый в воде при определенных условиях может превращаться в нерастворимую форму фибрин. Благодаря этому свойству осуществляется свертывание крови. Плазма, из которой удален фибриноген имеет название сыворотки крови.

Форменные элементы

Эритроциты красные кровяные тельца человека и млекопитающих, представляют собой неподвижные, высокодифференцированные постклеточные образования, которые в процессе развития теряют ядро и все цитоплазматические органеллы. Основной функцией их является – дыхательная. Эта функция выполняется при помощи гемоглобина – сложного белка хромопротеида, который содержит железо.

Кроме этого, эритроциты участвуют в транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности цитолеммы.

Количество эритроцитов во всем объеме крови составляет 25 x 1012 – объем равен около 2 л. В 1 литре крови количество эритроцитов:

у мужчин – 3,9 x 1012 – 5,5 x 1012 ;

у женщин – 3,7 x 1012 – 4,9 x 1012 .

Несколько большая концентрация эритроцитов у новорожденных детей – 6,0 x 1012 – 9,0 x 1012, и старых людей – до 6,0 x 1012.

Количество эритроцитов у практически здоровых людей может колебаться в зависимости от физических нагрузок , пребывания в высокогорных условиях, при действии некоторых гормонов и др.

Форма и строение

Большая часть эритроцитов имеет форму двояковогнутых дисков которые называются дискоцитами.

Дискоциты составляют около 80% от общего числа эритроцитов.

Исследования под сканирующим электронным микроскопом выявили и

другие формы эритроцитов:

а) планоциты – с плоской поверхностью;

б) стоматоциты – куполообразные;

в) седловидные – двухямочные;

г) сфероциты – шаровидные;

д) эхиноциты – шиповидные;

Сфероциты и эхиноциты относятся к стареющим эритроцитам.

Такое разнообразие форм в физиологических условиях называется физиологическим пойкилоцитозом, их количество не должно превышать 20%. Свыше этого показатели считаются патологией и определяются как патологический пойкилоцитоз.

ЁФорму эритроцита поддерживает встроенный в эритроцитарную мембрану сложный белок b – сиалогликопротеид и специальный мембранный каркас построенный из белка спектрина, который внутри прилежит к плазмолемме и связанный с другим белком анкерином.

ЁДиаметр эритроцитов составляет у человека 7,1 – 7,9 мкм, толщина края 2,0 – 2,5 мкм, в центре – 1 мкм.

Углубления в центре эритроцита называется физиологической экскавацией, что позволяет увеличить его площадь и ускорить насыщение его кислородом.

В физиологических условиях указанные размеры имеют 75% эритроцитов – нормоциты (физиологический пойкилоцитоз).

Кроме этого встречается еще две формы эритроцитов макроциты и микроциты

Макроциты – размеры свыше 8,0мкм – 12,5%.

Микроциты – размеры 6,0 мкм и меньше – 10,5%

Если количество микро- и макроцитов больше 25%, то это явление называется -патологическим анизоцитозом. Общая площадь эритроцита равна 125 мкм2.

ЁПлазмолемма (мембрана) – толщина около 20 нм. На наружной поверхности располагаются фосфолипиды, сиаловая кислота, антигенные олигосахариды, адсорбированные протеиды.

На внутренней поверхности – гликолитические ферменты, Nа+ К+, АТФ- азы, гликопротеиды, гемоглобин.

Являясь полупроницаемой оболочка эритроцита осуществляет активный перенос через мембрану ионов Na, К, О2 и СО2 , и других веществ.

ЁГиалоплазма – содержит многочисленные гранулы гемоглобина размером 4-5 нм и состоит на 60% из воды и 40% сухого остатка. 95% сухого остатка составляет гемоглобин и 5% другие соединения.

Гемоглобин представляет собой сложное соединение, состоящее из белковой части – глобина и железосодержащей геминовой группы.

Он образует неустойчивые соединения с кислородом- оксигемоглобин, и с углекислым газом – карбгемоглобин, тем самым обеспечивая дыхательную функцию.

Соединение гемоглобина с угарным газом (СО) – карбоксигемоглобин, является устойчивым, а сродство гемоглобина к угарному газу в 300 раз больше, чем к О2 , что создает опасность удушья в атмосфере с повышенной концентрацией СО.

Человек имеет два типа гемоглобина:

а) НвА – характерен для взрослого;

б)НвF- характерен для эмбриона; его способность связываться с О2 намного выше,чем НвА, что позволяет обеспечить ткани эмбриона кислородом в условиях питания смешанной кровью.

НвА- у взрослых составляет 98% и 2% НвF; К моменту рождения НвF составляет 80%, а НвА – 20%.

При патологии (гемоглобинозы или гемоглобинопатии) могут появляться другие виды гемоглобинов, отличающиеся другим составом аминокислот. Основной путь образования энергии в эритроцитах, лишенных митохондрий – это гликолиз – анаэробное окисление глюкозы с образованием АТФ и НАДФ.

Продолжительность жизни эритроцита 120 дней, и в организме человека ежедневно разрушается около 200 млн эритроцитов. Разрушение сопровождается расщеплением Нв на белок глобин и железосодержащую геминовую группу. Освободившееся железо используется для синтеза гемоглобина в новых эритроцитах. Глобин используется печенью для образования желчных кислот.

В физиологических условиях наряду со зрелыми формами эритроцитов в крови содержится 1 – 5% молодых форм бедных гемоглобином – ретикулоцитов. Они окрашиваются и кислыми и основными красителями, т. е.

полихроматофильны в цитоплазме при специальном окрашивании выявляются зернисто – сетчатые структуры – это остатки органелл, содержащие рибосомальную РНК – эндоплазматической сети рибосом, а также митохондрий.

В ретикулоцитах в незначительной степени происходит синтез белка ( глобина ), гемма, пуринов, пиридиннуклеотидов, фосфатидов и липидов.

Тромбоциты– безъядерные фрагменты цитоплазмы размером 2 – 3 мкм, которые отделились от гигантских клеток костного мозга – мегакариоцитов.

Количество – 180 – 320 x 109 в одном литре крови.

Строение

Тромбоцит состоит из :

1) Гиаломера – представляет основу тромбоцита;

2) Грануломера – зернышек, образующих скопление в центре или разбросанных по периферии.

Существуют два типа гранул:

а) плотные, темные ( a- гранулы )

б) серотониновые гранулы (δ- гранулы)

в) лизосомы и микропероксисомы (λ-гранулы).

– Грануломер содержит также зерна гликогена и митохондрий.

– Гиаломер содержит циркулярно расположенные пучки, состоящие из 10 – 15 микротрубочек которые помогают поддерживать форму тромбоцита, а также актиновые и миозиновые микрофилламенты.

Тромбоциты образуют большое количество отростков различного размера и толщины (усики), которые участвуют в агрегации тромбоцитов и образовании тромба.

При окрашивании по методу Романовского – Гимза, обнаруживается 5видов тромбоцитов:

а) юные с базофильным гиаломером и единичными азурофильными гранулами;

б) зрелые, со слабооксифильным гиаломером и выраженной азурофильной зернистостью;

в) старые – темные; сине – фиолетового оттенка с темно – фиолетовой зернистостью;

г) дегенеративные с серовато – синеватым гиаломером и синевато – фиолетовой зернистостью;

д) гигантские формы (формы раздражения ), размер которых в 2 – 3 раза превышает нормальные размеры. Имеют розовато – сиреневый гиаломер с фиолетовой зернистостью.

Продолжительность жизни тромбоцита 5-8 дней.

ЁФункция – участие в свертывании крови. Тромбоциты выделяют фермент тромбопластин, который способствует превращению растворимого фибриногена в нерастворимый фибрин. Агрегированные тромбоциты формируют каркас тромба, на котором оседают нити фибрина.

Тромбоцитопения ведет к пониженной свертываемости крови и сопровождается спонтанными кровотечениями.

Лейкоциты– белые, шаровидные, содержащие ядро и все цитоплазматические органеллы клетки крови, которые способны выходить за пределы сосудов и активно передвигаться путем образования псевдоподий.

У взрослого человека количества лейкоцитов в 1 литре крови составляет 3,8 х 109- 9х109.

Увеличение количества лейкоцитов – лейкоцитоз; уменьшение – лейкопения;

Класификация

Все лейкоциты, в зависимости от наличия зернистости или отсутствия таковой, делятся на:

1. Гранулоциты– зернистые;

2. Агранулоциты– не содержащие зернистость;

В зависимости от окраски зернистости гранулоцитыделятся на:

1) нейтрофильные: а) юные;б) палочкоядерные в) сегментоядерные

2) оксифильные (ацидофильные, эозинофильные),

3) базофильные.

Агранулоцитыделятся на: 1) лимфоциты; 2) моноциты;

Дата добавления: 2016-07-27; просмотров: 1285;

Источник: https://poznayka.org/s51443t1.html

Состав плазмы крови

Объем плазмы у человека равен 55-60% общего объема крови. Для отделения форменных элементов от плазмы применяется отстаивание или центрифугирование крови после предварительного прибавления к ней вещества, задерживающего ее свертывание.

Эритроциты как более тяжелые оседают при этом на дно пробирки, образуя красный слой, а над ними располагается тонкий бесцветный или беловатый слой более легких лейкоцитов и кровяных пластинок (тромбоцитов), а над форменными элементами находится прозрачный, бесцветный или слегка желтоватый слой плазмы.

У человека плазма крови содержит 90-91% воды и 9-10% сухого остатка, в котором имеются белки и соли. Белки составляют у взрослых людей 6,6-8,2% плазмы, или около 3/4 ее сухого остатка. Она содержит 4-4,5% альбумина, 2,8-3,1% глобулина и 0,1-0,4% фибриногена.

Плазма крови у лошади содержит 2,7% альбумина и 4,6% глобулина, у быка — 3,3 и 4,1 %, у свиньи — 4,4 и 3,9%. Белковый коэффициент, или отношение альбуминов к глобулинам (при приравнивании количества глобулинов к единице), у человека колеблется от 1:1,5 до 1:2,3.

Общее количество белка крови человека увеличивается зимой и уменьшается летом.

Количество белков в плазме осенью меньше, чем весной, что зависит от характера питания.

У взрослого человека общее количество белков плазмы уменьшается с возрастом независимо от питания. При этом относительное содержание альбуминов падает, а глобулинов возрастает. У женщин количество глобулинов несколько больше, чем у мужчин.

Глобулины обеспечивают защитные свойства крови. Относящийся к глобулинам фибриноген имеет важное биологическое значение, так как участвует в свертывании крови. Он образуется и печени.

В плазме крови существуют промежуточные продукты обмена веществ, которые можно выделить из фильтрата после осаждения всех белков. К ним относятся мочевина, мочевая кислота, аминокислоты, креатинин, аммиак и др.

Азот, содержащийся в этих веществах, называется остаточным или небелковым азотом. Его количество у взрослого человека составляет 20-40 мг %, или 20-40 мг на 100 см3 крови.

В плазме крови находятся также глюкоза, молочная кислота, жир, жирные кислоты и жироподобные вещества. Натощак в плазме человека содержится 0,1-0,12% (100-120 мг %) глюкозы и около 0,5-1% жиров и жироподобных веществ. Максимальное количество холестерина у здоровых людей зимой и осенью (200-250 мг %), минимальное — весной и летом (170-180 мг %).

Читайте также:  Венозная кровь

Общее содержание холестерина закономерно возрастает примерно до 70 лет, а затем снижается.

После приема пиши количество глюкозы в плазме человека можем возрасти до 0,2%, т. е. наблюдается алиментарная (пищевая) гипергликемия. Снижение содержания глюкозы в плазме ниже называется гипогликемией. Повышение количества глюкозы сверх 0,2%, и снижение ниже 0,05% вызывает тяжелые нарушения функций организма и ведет к смерти.

При покое количество молочной кислоты в крови равно 10-30 мг %. При усиленной физической работе оно в несколько раз увеличивается, также увеличивается и содержание фосфорной кислоты и её соединений с продуктами обмена белков и углеводов.

В крови находятся различные ферменты. Некоторые имеются только в плазме, другие – в форменных элементах. В плазме содержаться амилазы, расщепляющие углеводы, липаза, расщепляющая жиры, и оксидазы и пероксидазы, участвующие в окислительно-восстановительных процессах.

Основные электролиты плазмы (в среднем, в миллиграмм-процентах): Na – 280 – 350, Л – 18 – 20, Ca – 9 – 11, Mg – 1 – 3, Cl – 320 —  360, HCO3 – 160, SO4 – 22, HPO4 – 10.

Кроме того, в плазме крови человека содержится: йод – 0,002-0,013 мг  %. Бром – 0,5-1,5 мг %. В эритроцитах есть и железо (в соединении с белками) – 50-60 мг %.

Спектральный анализ текущей крови позволил обнаружить, что в ней происходят окисление, расщепление углеводов без участия кислорода, расщепление соединений, содержащих фосфор, отщепление аммиака от белковых соединений.

При введении в кровь чуждых организму белков в ней появляются расщепляющие эти белки защитные белковые ферменты — протеазы, которые обладают специфичностью. Они расщепляют именно тот белок, который вводится в организм.

При удалении из плазмы фибриногена, превращающегося при свертывании в фибрин, получается сыворотка. Цельная кровь, лишенная фибриногена, называется дефибринированной. Она состоит из форменных элементов и сыворотки.

У кишечнополостных и низших червей доставка питательных веществ к клеткам тела и удаление остаточных продуктов обмена веществ осуществляется водянистой жидкостью — гидролимфой. У некоторых беспозвоночных она содержит белковые вещества, переносящие кислород.

У членистоногих и моллюсков в незамкнутых сосудах циркулирует гемолимфа, в которой содержится больше белков и неорганических веществ, чем в гидролимфе.

В гемолимфе растворены кровяные пигменты (хромопротеиды), выполняющие дыхательную функцию, и она одновременно осуществляет функцию крови и лимфы.

Ионный коэффициент и его значение

Содержание катионов и анионов в плазме и сохранение определенного соотношения между ними (ионный коэффициент) имеет значение для нормальной деятельности всех органов и тканей и в первую очередь для сохранности и нормального функционирования форменных элементов крови. Особенное значение имеет соотношение ионов натрия, калия и кальция.

Источник: http://www.polnaja-jenciklopedija.ru/biologiya/sostav-plazmy-krovi.html

Состав и функции крови

Кровь, беспрерывно циркулирующая в замкнутой системе кровеносных сосудов, выполняет в организме важнейшие функции: транспортную, дыхательную, регуляторную и защитную. Она обеспечивает относительное постоянство внутренней среды организма.

Кровь — это разновидность соединительной ткани, состоящей из жидкого межклеточного вещества сложного состава — плазмы н взвешенных в ней клеток — форменных элементов крови: эритроцитов (красных кровяных клеток), лейкоцитов (белых кровяных клеток) и тромбоцитов (кровяных пластинок). В 1 мм3 крови содержится 4,5–5 млн. эритроцитов, 5–8 тыс. лейкоцитов, 200–400 тыс. тромбоцитов.

В организме человека количество крови составляет в среднем 4,5–5 л или 1/13 массы его тела. Плазма крови по объему составляет 55–60%, а форменные элементы 40–45%.

Плазма крови представляет собой желтоватую полупрозрачную жидкость. В ее состав входит вода (90–92%), минеральные и органические вещества (8–10%), 7% белков. 0,7% жиров, 0.

1% — глюкозы, остальная часть плотного остатка плазмы — гормоны, витамины, аминокислоты, продукты обмена веществ.

Форменные элементы крови

Эритроциты — безъядерные красные кровяные клетки, имеющие форму двояковогнутых дисков. Такая форма увеличивает поверхность клетки в 1.5 раза. Цитоплазма эритроцитов содержит белок гемоглобин — сложное органическое соединение, состоящее из белка глобина и пигмента крови гема, в состав которого входит железо.

Основная функция эритроцитов — транспортировка кислорода и углекислого газа. Эритроциты развиваются из ядерных клеток в красном костном мозге губчатого вещества кости. В процессе созревания они теряют ядро и поступают в кровь. В 1 мм3 крови содержится от 4 до 5 млн. эритроцитов.

Продолжительность жизни эритроцитов 120–130 дней, затем в печени и селезенке они разрушаются, и из гемоглобина образуется пигмент желчи.

Лейкоциты — белые кровяные тельца, содержащие ядра и не имеющие постоянной формы. В 1 мм3 крови человека их содержится 6–8 тысяч.

Лейкоциты образуются в красном костном мозге, селезенке, лимфатических узлах; продолжительность их жизни 2–4 дня. Разрушаются они также в селезенке.

Основная функция лейкоцитов — защита организмов от бактерий, чужеродных белков, инородных тел. Совершая амебоидные движения, лейкоциты проникают через стенки капилляров в межклеточное пространство.

Они чувствительны к химическому составу веществ, выделяемых микробами или распавшимися клетками организма, и передвигаются по направлению к этим веществам или распавшимся клеткам.

Вступив с ними в контакт, лейкоциты своими ложноножками обволакивают их и втягивают внутрь клетки, где при участии ферментов они расщепляются.

Лейкоциты способны к внутриклеточному пищеварению. В процессе взаимодействия с инородными телами многие клетки гибнут. При этом вокруг чужеродного тела накапливаются продукты распада, и образуется гной.

Лейкоциты, захватывающие различные микроорганизмы и переваривающие их, И. И. Мечников назвал фагоцитами, а само явление поглощения и переваривания — фагоцитозом (поглощающим).

Фагоцитоз — защитная реакция организма.

Тромбоциты (кровяные пластинки) — бесцветные, безъядерные клетки округлой формы, играющие важную роль в свертывании крови. В 1 л крови находится от 180 до 400 тыс. тромбоцитов. Они легко разрушаются при повреждении кровеносных сосудов. Тромбоциты образуются в красном костном мозге.

Форменные элементы крови, помимо вышеуказанного, выполняют очень важную роль в организме человека: при переливании крови, свертывании, а также в выработке антител и фагоцитозе.

Переливание крови

при некоторых заболеваниях или кровопотерях человеку делают переливание крови. Большая потеря крови нарушает постоянство внутренней среды организма, кровяное давление падает, уменьшается количество гемоглобина. В таких случаях в организм вводят кровь, взятую у здорового человека.

Переливанием крови пользовались с давних времен, но часто это заканчивалось смертельным исходом. Объясняется это тем, что донорские эритроциты (то есть эритроциты, взятые у человека, отдающего кровь), могут склеиваться в комочки, которые закрывают мелкие сосуды и нарушают кровообращение.

Склеивание эритроцитов — агглютинация — происходит в том случае, если в эритроцитах донора имеется склеиваемое вещество — агглютиноген, а в плазме крови реципиента (человека, которому переливают кровь) находится склеивающее вещество агглютинин. У различных людей в крови есть те или иные агглютинины и агглютиногены, и в связи с этим кровь всех людей разделена на 4 основные группы по их совместимости

Совместимость крови людей

Группы крови Может отдавать кровь группам Может принимать кровь групп
I I, II, III, IV I
II II. IV I. II
III III. IV I. III
IV IV I, II, III, IV

Изучение групп крови позволило разработать правила ее переливания. Лица, дающие кровь, называются донорами, а лица, получающие ее, — реципиентами. При переливании крови строго соблюдают совместимость групп крови.

Любому реципиенту можно вводить кровь I группы, так как ее эритроциты не содержат агглютиногены и не склеиваются, поэтому лиц с I группой крови называют универсальными донорами, но им самим можно вводить кровь только I группы.

Кровь людей II группы можно переливать лицам, имеющим II и IV группы крови, кровь III группы — лицам III и IV. Кровь от донора IV группы можно переливать только лицам данной группы, но им самим можно переливать кровь всех четырех групп. Людей с IV группой крови называют универсальными реципиентами.

Переливанием крови лечат малокровие. Оно может быть вызвано влиянием различных отрицательных факторов, в результате чего в крови уменьшается количество эритроцитов, или понижается содержание в них гемоглобина.

Малокровие возникает и при больших потерях крови, при недостаточном питании, нарушениях функций красного костного мозга и др.

Малокровие излечимо: усиленное питание, свежий воздух помогают восстановить норму гемоглобина в крови.

Процесс свертывания крови осуществляется при участии белка протромбина, который переводит растворимый белок фибриноген в нерастворимый фибрин, образующий сгусток.

В обычных условиях в кровеносных сосудах отсутствует активный фермент тромбин, поэтому кровь остается жидкой и не свертывается, но есть неактивный фермент протромбин, который образуется при участии витамина К в печени и костном мозге.

Неактивный фермент активируется в присутствии солей кальция и переводится в тромбин при действии на него фермента тромбопластина, выделяемого красными кровяными тельцами — тромбоцитами.

При порезе или уколе оболочки тромбоцитов нарушаются, тромбопластин переходит в плазму и кровь свертывается. Образование тромба в местах повреждения сосудов — защитная реакция организма, предохраняющая его от кровопотери. Люди, у которых кровь не способна свертываться, страдают тяжелым заболеванием — гемофилией.

Иммунитет

Иммунитет — это невосприимчивость организма к инфекционным и неинфекционным агентам и веществам, обладающим антигенными свойствами.

В иммунной реакции невосприимчивости, кроме клеток-фагоцитов, принимают участие и химические соединения — антитела (особые белки, обезвреживающие антигены — чужеродные клетки, белки и яды).

В плазме крови антитела склеивают чужеродные белки или расщепляют их.

Антитела, обезвреживающие микробные яды (токсины), называют антитоксинами. Все антитела специфичны: они активны только по отношению к определенным микробам или их токсинам. Если в организме человека есть специфические антитела, он становится невосприимчивым к данным Инфекционным заболеваниям.

Открытия и идеи И. И. Мечникова о фагоцитозе и значительной роли в этом процессе лейкоцитов (в 1863 г.

он произнес свою знаменитую речь о целебных силах организма, в которой впервые излагалась фагоцитарная теория иммунитета) легли в основу современного учения об иммунитете (от лат. «иммунис» — освобожденный).

Эти открытия позволили достигнуть больших успехов в борьбе с инфекционными заболеваниями, которые на протяжении веков были подлинным бичом человечества.

Велика роль в предупреждении заразных болезней предохранительных и лечебных прививок — иммунизации с помощью вакцин и сывороток, создающих в организме искусственный активный или пассивный иммунитет.

Различают врожденный (видовой) и приобретенный (индивидуальный) виды иммунитета.

Врожденный иммунитет является наследственным признаком и обеспечивает невосприимчивость к тому или иному инфекционному заболеванию с момента рождения и наследуется от родителей. Причем иммунные тела могут проникать через плаценту из сосудов материнского организма в сосуды эмбриона или же новорожденные получают их с материнским молоком.

Приобретенный иммунитет делят на естественный и искусственный, а каждый из них разделяют на активный и пассивный.

Естественный активный иммунитет вырабатывается у человека в процессе перенесения инфекционного заболевания. Так, люди, перенесшие в детстве корь или коклюш, уже не заболевают ими повторно, так как у них в крови образовались защитные вещества — антитела.

Естественный пассивный иммунитет обусловлен переходом защитных антител из крови матери, в организме которой они образуются, через плаценту в кровь плода.

Пассивным путем и через материнское молоко дети получают иммунитет по отношению к кори, скарлатине, дифтерии и др.

Через 1–2 года, когда антитела, полученные от матери, разрушаются или частично удаляются из организма ребенка, восприимчивость его к указанным инфекциям резко возрастает.

Искусственный активный иммунитет возникает после прививки здоровым людям и животным убитых или ослабленных болезнетворных ядов — токсинов. Введение в организм этих препаратов — вакцин — вызывает заболевание в легкой форме и активизирует защитные силы организма, вызывая в нем образование соответствующих антител.

С этой целью в стране проводится планомерная вакцинация детей против кори, коклюша, дифтерии, полиомиелита, туберкулеза, столбняка и других, благодаря чему достигнуто значительное снижение числа заболеваний этими тяжелыми болезнями.

Читайте также:  Как корвалол влияет на давление?

Искусственный пассивный иммунитет создается путем введения человеку сыворотки (плазма крови без белка фибрина), содержащей антитела и антитоксины против микробов и их ядов-токсинов. Сыворотки получают главным образом от лошадей, которых иммунизируют соответствующим токсином.

Пассивно приобретенный иммунитет сохраняется обычно не больше месяца, но зато проявляется сразу же после введения лечебной сыворотки.

Своевременно введенная лечебная сыворотка, содержащая уже готовые антитела, часто обеспечивает успешную борьбу с тяжелой инфекцией (например, дифтерией), которая развивается так быстро, что организм не успевает вырабатывать достаточное количество антител и больной может умереть.

Иммунитет фагоцитозом и выработкой антител защищает организм от инфекционных заболеваний, освобождает его от погибших, переродившихся и ставших чужеродными клеток, вызывает отторжение пересаженных чужеродных органов и тканей.

После некоторых инфекционных заболеваний иммунитет не вырабатывается, например, против ангины, которой можно болеть много раз.

Источник: http://shkolo.ru/sostav-i-funktsii-krovi/

Плазма крови: что образуется из плазмы, из чего состоит, для чего нужна

Кровяной поток сформирован комбинацией ряда веществ, а именно он образуется из плазмы крови и форменных ее частиц. Каждый из элементов крови обладает присущими только ему уникальными свойствами и выполняет определенные функции.

Красный цвет кровяного русла имеет такой оттенок благодаря эритроцитам. Если бы не красные кровяные тельца, то данная субстанция была желтоватой окраски какой в чистом виде и является плазма крови, которая занимает 60% емкости всего кровотока.

Именно за счет наличия плазмы, кровяное русло имеет жидкую консистенцию.

Что такое плазменная жидкость и ее состав

По сути, кровь и плазма определяются тождественными понятиями.

Плазма тока крови являет собой слегка замутненную, гомогенную, желтоватую, опалесцирующую жидкость, плотность которой тяжелее воды.

Жидкость из плазмы крови при центрифугировании позволяет образоваться сыворотке. К тому же такая важная субстанция, как лимфа образуется путем выделения из плазменной основы тканевой жидкости.

Плазменный объем, состоящий из конкретно плазмы и форменных элементов, также включает в себя соотношение органических небелковых веществ, в комплексе которых находятся: органические азотсодержащие и безазотистые соединения, неорганические элементы (минералы) и вдобавок гликопротеин плазмы крови, представляющий большинство гормонов, антитела, углеводород, называемый глюкозой плазмы, и прочие составляющие. Глюкоза в плазме служит источником энергии для всех клеток.

Компоненты плазмы крови и их количество из расчета на объем одного литра:

  • 900 грамм вода;
  • 70 грамм белки на объем литра кровяного потока;
  • 20 грамм молекулярные соединения на объем литра кровяной субстанции.

Из чего становится понятно, что плазменная основа состоит преимущественно из надосадочной жидкости, поступающей в виде питьевой воды в организм.

И клеток крови, вырабатывающихся в главном центре кроветворения, которые являются белками, относящимися к органическим веществам плазмы крови, таким как альбумины, глобулины, фибриногены. Плазма крови без фибриногена утрачивает полноценную способность свертываемости.

Количество этого органического вещества обычно варьируется в пределах от 2 до 4 граммов на объем литра. Поэтому во избежание внутренних и внешних кровотечений норма фибриногена должна поддерживаться.

Основные клетки крови, к которым относятся эритроциты, лейкоциты, тромбоциты, образовавшись в костном мозге, поступают в кровеносную систему, то есть присоединяются к плазме крови. Процесс этот постоянный и именно благодаря ему осуществляются все жизненно важные функции в организме.

Функции плазмы крови заключаются в следующем:

  1. Транспортировка кровяных клеток, глюкозы, кислорода, гормонов, продуктов метаболизма и питательных веществ.
  2. Оперативный контроль за межклеточными (экстраваскулярными) жидкостями.
  3. Осуществление процесса роста и формирования других клеток организма.
  4. Исключение слипания кровяных клеток и образование избыточных тромбов.
  5. Поддерживание гомеостаза (водного баланса).
  6. Регуляция температурного режима в организме.
  7. Соучастие в процессе свертываемости кровяной субстанции. Плазменная основа, лишенная фибриногена, теряет способность обеспечения полноценного функционирования тромбоцитов.
  8. Гарантирует кислотно-щелочное соотношение, за которое ответственна буферная система плазмы крови.
  9. Стабильную и полноценную деятельность иммунной системе.
  10. Обеспечивается норма кровяного давления, за счет специфического фермента ренина плазмы крови. В некоторых ситуациях человеку могут вводить изотонические растворы как аналог естественному кровяному давлению, в результате чего оно нормализуется. Ввести раствор необходимо, когда изотония (функция клетки поддерживать осмотическое давление), то есть ее норма по каким-либо причинам нарушена.

Свойства плазмы крови на этом списке не завершаются, перечислены лишь наиболее значимые пункты. Плазменная основа, будучи биологически активной жидкостью, постоянно циркулирует по телу, снабжая его всеми необходимыми для жизни веществами.

Следовательно, плазма крови представляет собой транспортную среду для обеспечения процесса жизнедеятельности в тканях и органах.

И кроме того, на плазму возложена очистка крови человека и всего организма от продуктов распада, отмерших клеток, пищевых химических добавок, тяжелых металлов и прочих токсичных отходов. Очищение происходит посредством органов детоксикации.

Цвет плазмы может меняться в зависимости от состояния организма:

  • Зеленоватый оттенок появляется при нарушении деятельности иммунной системы.
  • Красноватая окраска наблюдается в плазме крови при отклонениях функции печени.
  • Серый цвет приобретается при расстройствах поджелудочной железы.
  • Молочный тон свидетельствует, что превышено количество холестерина.

Характерный для плазменной жидкости желтый цвет обусловлен присутствием в ней частиц желчного пигмента. На ее цвет и состав влияют многие факторы, но более всего рацион. Мутное ее состояние бывает от чрезмерного употребления жирной пищи.

Ферменты плазменной жидкости

Исследование происхождения ферментов плазмы крови используют в диагностике патологических процессов организма. Особый интерес у медицинских специалистов вызывают индикаторные ферменты плазмы крови и их активность в сыворотке. Потому как появление в сыворотке или плазме некоторых ферментных комплексов, количество которых аномально, сигнализирует об определенных патологиях.

Ферменты плазмы крови подразделяются на группы:

  • Индикаторные или клеточные энзимы отвечают за внутриклеточные процессы. Количество энзимов данного типа распределено в митохондриях, лизосомах, альдолазах и иных клетках. При повреждениях мягких тканей в сыворотке возрастает активность индикаторных ферментов.
  • Экскреторные энзимы выделяются в желчном пузыре и синтезируются печенью. Экскреторный фермент, используемый в диагностике заболеваний, о патологиях сигнализирует обычно повышением активности в плазменном потоке.
  • Секреторные ферменты являются собственными ферментами плазменного потока. Этот энзим, образующийся в плазменном русле, выполняют физиологическую роль, одна из которых заключается в обеспечении свертываемости кровяной субстанции.

Изучение активности тех или иных ферментов важно отслеживать для диагностики множества патологических состояний. К причинам гиперферментации относятся такие серьезные отклонения, как цитолиз, некроз тканей, увеличение проницаемости биомембран другие.

Так, при изменениях со стороны изоферментов, наблюдаются сбои в работе сердечной мышцы и развитие инфаркта миокарда. Цитоплазменный фермент предзнаменует начало заболеваний печени. Эндогенный фермент отклоняется от нормы при малярии.

Зачем и положено использовать анализ крови на малярийный плазмодий, чтобы своевременно выявить паразитарные антигены, способные спровоцировать серьезные последствия. И также важно проводить анализы кровяного потока на другие заболевания.

Источник: https://krov.expert/sostav/plazma-krovi.html

Понятие о системе крови. Функции крови. Состав крови. Плазма крови, ее состав и физико-химические свойства

Кровь – это физиологическая система, которая включает в себя:

1)периферическую (циркулирующую и депонированную) кровь;

2) органы кроветворения;

3) органы кроверазрушения;

4) механизмы регуляции.

Система крови обладает рядом особенностей:

1) динамичностью, т. е. состав периферического компонента может постоянно изменяться;

2) отсутствием самостоятельного значения, так как все свои функции выполняет в постоянном движении, т. е. функционирует вместе с системой кровообращения.

Ее компоненты образуются в различных органах.

В организме кровь выполняет множество функций:

1) транспортную;

2) дыхательную;

3) питательную;

4) экскреторную;

5) терморегулирующую;

6) защитную.

Кровь также регулирует поступление к тканям и органам питательных веществ и поддерживает гомеостаз.

Состав крови.

Плазма кровиимеет относительно постоянный солевой состав. Около 0,9% плазмы приходится на поваренную соль (хлористый натрий), есть в ней и соли калия, кальция, фосфорной кислоты.

Около 7% плазмы составляют белки. Среди них белок фибриноген, который принимает участие в свёртывании крови.

В плазме крови есть углекислый газ, глюкоза, а также другие питательные вещества и продукты распада.

Эритроциты – красные кровяные клетки, транспортирующие кислород к тканям и углекислый газ к лёгким. Имеют красный цвет, благодаря особому веществу – гемоглобин, который и окрашивает эти клетки в красный цвет. (Подробнее см. здесь)

Лейкоциты – называют белыми кровяными клетками, хотя на самом деле они бесцветные. Основная функция лейкоцитов – распознавание и уничтожение чужеродных соединений и клеток, которые оказываются во внутренней среде организма.

Большая группа клеток крови называется лимфоцитами, поскольку их созревание завершается в лимфатических узлах и вилочковой железе (тимусе). Эти клетки способны опознавать химическую структуру чужеродных соединений антигенов и вырабатывать особые химические вещества –антитела, которые нейтрализуют или уничтожают эти антигены.

Тромбоциты, или кровяные пластинки, принимают участие в свёртывании крови. Если происходит травма и кровь выходит из сосуда, тромбоциты слипаются и разрушаются. При этом они выделяют ферменты, которые вызывают целую цепочку химических реакций, ведущих к свёртыванию крови.

Источник: https://students-library.com/library/read/33845-ponatie-o-sisteme-krovi-funkcii-krovi-sostav-krovi-plazma-krovi-ee-sostav-i-fiziko-himiceskie-svojstva

Функции крови, ее состав, свойства плазмы

Глава 17

ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА

КРОВЬ

Гомеостаз. Состав, свойства и функции крови.

Гемостаз. Группа крови и резус-фактор

Гомеостаз, его механизм и значение.

Исторические основы учения о гомеостазе

У многоклеточных организмов большинство клеток не имеет непо­средственного контакта с внешней средой, их жизнедеятельность обеспе­чивается наличием внутренней среды (кровь, лимфа, тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма.

Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств которое называется гомеостазом.

Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гистогематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В 1978 г. Клод Бернар поставил вопрос о значении гомеостаза (термин ввёл В. Кеннон). По мнению К.Бернара все проявления жизни обусловлены конфликтом между предшествующими силами организма, конституцией и влиянием внешней среды.

Жизненный конфликт в организме выявляется в виде двух феноменов: синтеза и распада.

Бернар понимал, что установившиеся определённые взаимоотношения организма и среды могут при известных условиях закрепляться и передаваться последующим поколениям.

У каждого высокоорганизованного животного имеются две среды: внешняя, в которой находится организм, и внутренняя, в которой живут и функционируют ткани и системы организма и, которая не меняется.

Внутренняя среда, окружающая органы и ткани – это плазма крови, лимфа, межтканевая жидкость. В организме создаётся собственная неизменённая среда, несмотря на меняющиеся условия внешней среды.

В результате организм живёт, оставаясь свободным и независимым.

Гомеостаз представляет собой одну из важнейших проблем современной медицины. Механизмы гомеостаза обусловлены деятельностью различных физиологических систем организма. Решающая роль принадлежит коре головного мозга и гормонам.

Функции крови, ее состав, свойства плазмы

Кровь (sanguis, haema; греч. haima, haimatos) – это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве­ществ всех клеток тела. Красный цвет крови придает гемоглобин, содер­жащийся в эритроцитах. Учение о крови и ее болезнях называется гемато­логией.

В понятие “система крови” входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат).

Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

1) дыхательная – перенос кислорода от легких к тканям и углекисло­го газа от тканей к легким;

2) трофическая (питательная) – доставка питательных веществ, вита­минов, минеральных солей и воды от органов пищеварения к тканям;

3) экскреторная (выделительная) – удаление из тканей конечных про­дуктов метаболизма, лишней воды и минеральных солей;

4) терморегуляторная – регуляция температуры тела путем охлаж­дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая – поддержание стабильности ряда констант гомеостаза: рН, осмотического давления;

Читайте также:  Носовое кровотечение у беременных

6) регуляция водно-солевого обмена между кровью и тканями;

7) защитная – участие в клеточном (лейкоциты), гуморальном (анти­тела) иммунитете, в свертывании для прекращения кровотечения;

8) гуморальная регуляция – перенос гормонов, медиаторов и др.;

9) креаторная (лат. creatio – созидание) – перенос макромолекул, осу­ществляющих межклеточную передачу информации с целью восстановле­ния и поддержания структуры тканей.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В покое в сосуди­стой системе находится 60-70% крови. Это так называемая циркулирую­щая кровь. Другая часть крови (30-40%) содержится в специальных кровя­ных депо. Это так называемая депонированная, или резервная, кровь.

Кровь состоит из жидкой части – плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы – 55-60%. В депонированной крови наоборот: форменных элементов – 55-60%, плазмы – 40-45%.

Объемное соотношение форменных элементов и плазмы (или часть объема крови, приходящаяся на долю эритроцитов) называется гематокритом (греч. haema, haematos – кровь, kritos – отдельный, определенный). Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритроцитов – 1,090, плазмы — 1,025-1,034.

Вязкость цельной крови по отношению к воде составляет около 5, а вязкость плазмы – 1,7-2,2. Вязкость крови обусловлена наличием белков и особенно эритроцитов.

Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

1) альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;

2) глобулины (2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы – в составе гликопротеинов, меди, железа – в составе трансферрина, выработку антител, а также а- и р-агглютининов крови;

3) фибриноген (0,2-0,4%) участвует в свертывании крови.

Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д. Половина общего количества небелкового азота в плазме (так называемого остаточного азота) приходится на долю мочеви­ны.

В норме остаточного азота в плазме содержится 10,6-14,1 ммоль/л (30-40 мг%), а мочевины – 2,5-3,3 ммоль/л (15-20 мг %). В плазме находятся также безазотистые органические вещества: глюкоза 4,44-6,67 ммоль/л (80-120мг%), нейтральные жиры, липоиды.

Минеральные вещества плаз­мы составляют около 1% (катионы Na+, К+, Са2+, анионы С1-, НСО3-,

НРО4-). В плазме содержится также более 50 различных гормонов и фер­ментов.

Осмотическое давление – это давление, которое оказывают раст­воренные в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем около 7,6 атм., что соот­ветствует температуре замерзания крови, равной -0,56 – -0,58°С. Около 60% всего осмотического давления обусловлено солями натрия.

Растворы, осмотическое давление которых такое же, как у плазмы, называются изо­тоническими, или изоосмотическими. Растворы с большим осмотическим давлением называются гипертоническими, а с меньшим – гипотонически­ми. 0,85-0,9% раствор NaCl называется физиологическим.

Однако он не является полностью физиологическим, так как в нем нет других компонен­тов плазмы.

Онкотическое (коллоидно-осмотическое) давление – это часть осмо­тического давления, создаваемая белками плазмы (т.е. их способность притягивать и удерживать воду). Оно равно 0,03-0,04 атм. (25-30 мм рт. ст.), т.е.

1/200 осмотического давления плазмы (равного 7,6 атм.), и оп­ределяется более чем на 80% альбуминами.

Постоянство осмотического и онкотического давления крови является жестким параметром гомеостаза, без которого невозможна нормальная жизнедеятельность организма.

Реакция крови (рН) обусловлена соотношением в ней водородных (Н+) и гидроксильных (ОН-) ионов. Она также является одной из важней­ших констант гомеостаза, так как только при рН 7,36-7,42 возможно опти­мальное течение обмена веществ.

Крайними пределами изменения рН, совместимыми с жизнью, являются величины от 7 до 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную – алкалозом.

Поддержание постоянства реакции крови в пределах рН 7,36-7,42 (слабо­щелочная реакция) достигается за счет следующих буферных систем кро­ви:

1) буферной системы гемоглобина – самой мощной; на ее долю при­ходится 75% буферной емкости крови;

2) карбонатной буферной системы (Н2СО3 + NaНСОз) – занимает по мощности второе место после буферной системы гемоглобина;

3) фосфатной буферной системы, образованной дигидрофосфатом (NaH2PO4) и гидрофосфатом (Na2HPO4) натрия;

4) белков плазмы.

В поддержании рН крови участвуют также легкие, почки, потовые железы. Буферные системы имеются и в тканях. Главными буферами тка­ней являются клеточные белки и фосфаты.

Источник: https://megaobuchalka.ru/4/1889.html

Плазма крови и форменные элементы крови. Строение и функции эритроцитов, лейкоцитов, тромбоцитов

Плазма крови является ее жидкой частью, состоящей из растворенных в воде белков, углеводов, солей, биологически активных веществ (гормонов, ферментов и др.), а также продуктов клеточной диссимиляции, подлежащих выведению из организма.

Плазма крови, проходя через кровеносные капилляры, непрерывно получает и отдает различные вещества, но тем не менее химический состав ее стабилен.

Состав и функции плазмы крови

Химический состав плазмы крови:

  • 92% воды;
  • 7-8% белков;
  • 0,12% глюкозы;
  • 0,7-0,8% жиров;
  • 0,9% солей.

Белки плазмы обладают различными специфическими функциями и свойствами и делятся на три основные группы:

  • Альбумины — 4,5%;
  • глобулины — 1,7-3,5%
  • фибриноген — 0,4%.

Фибриноген участвует в процессе свертывания крови; гаммаглобулиновая фракция содержит антитела, которые обеспечивают иммунитет к различным инфекционным заболеваниям; другие виды белков играют важную роль в поддержании коллоидно-осмотического давления, регулирующего содержание воды в плазме.

Глюкоза является основным источником энергии для клеток. Снижение количества глюкозы в плазме крови приводит к резкому повышению возбудимости клеток головного мозга, что влечет за собой появление судорог. При дальнейшем уменьшении концентрации глюкозы нарушается кровообращение, дыхание и наступает смерть.

К минеральным веществам плазмы относятся соли Na, Ca, K и др. Соотношение и концентрация ионов этих солей играет важную роль в жизнедеятельности организма.

В клинической практике используются растворы, которые по осмотической активности (для человека 0,85-0,9% NaCl), а иногда и по своему количественному и качественному составу соответствуют плазме. Эти растворы называются физиологическими.

Постоянство химического состава плазмы крови поддерживается за счет нейрогуморальной регуляции организма.

Форменные элементы крови — это общее название клеток крови, находящихся во взвешенном состоянии в плазме. К форменным элементам крови относятся:

  • Эритроциты;
  • лейкоциты;
  • тромбоциты.

Эритроциты

Эритроциты, или красные кровяные тельца, находятся во взвешенном состоянии в плазме и определяют цвет крови. Они представляют собой в норме безъядерную двояковогнутую клетку округлой формы, диаметром 7-8мкм и 1-2мкм толщиной.

Эритроциты

В состав эритроцитов входит специфический пигмент крови — гемоглобин, который представляет собой белок, связанный с атомом железа. У взрослого мужчины в 1л крови содержится 4,0-5,0*1012 эритроцитов, у женщины — 3,9-4,7*1012. Эритроциты образуются в красном костном мозге, заполняющем полости некоторых костей. Средняя продолжительность жизни эритроцита составляет около 120 дней.

Ежесекундно в селезенке и печени происходит разрушение около 2,5млн. эритроцитов, и такое же их количество образуется в костном мозге.

При нарушении функции красного костного мозга, при некоторых инфекционных заболеваниях развивается анемия — уменьшение числа эритроцитов в крови, что приводит к кислородному голоданию тканей.

Функции эритроцитов

Основная функция эритроцитов заключается в транспорте кислорода от органов дыхания к тканям и удаления из тканей двуокиси углерода. Это связано с уникальной способностью гемоглобина образовывать непрочный химический комплекс с кислородом.

Атомы кислорода присоединяются к имеющимся в его молекуле атомам железа. В 100мл крови человека содержится около 15г гемоглобина. В легких кислород связывается с гемоглобином (Hb), образуя непрочное соединение — оксигемоглобин (HbO2): Hb+O2=HbO2. Эта реакция обратима.

В условиях низкого парциального давления кислорода в капиллярах тканей происходит распад оксигемоглобина с освобождением кислорода и гемоглобина. Гемоглобин присоединяет около 10% CO2. Остальное количество углекислого газа транспортируется плазмой крови в виде карбонатных соединений, в образовании и разрушении которых принимают участие ферменты эритроцитов.

Лейкоциты

Лейкоциты

Лейкоциты, или белые кровяные тельца, в отличие от эритроцитов лишены гемоглобина и имеют ядро. В отличие от других форменных элементов крови, лейкоциты способны к активному амебоидному движению.

Лейкоцитов гораздо меньше, чем эритроцитов — 4-9*109 в 1л. Количество их даже у одного и того же человека подвержено значительным колебаниям.

Меньше всего лейкоцитов в крови утром, натощак, а увеличение их содержания наблюдается после приема пищи, тяжелой мышечной работы, при воспалительных заболеваниях.

В крови находится несколько видов лейкоцитов, отличающихся друг от друга размерами, формой ядра, наличием или отсутствием зернистости в протоплазме.

Обладая амебоидным движением, лейкоциты способны проникать через стенки капилляров к очагам инфекции в тканях и фагоцитировать микроорганизмы.

Стимулами, направляющими движение лейкоцитов к очагам инфекции, служат вещества, выделяемые воспаленными и инфицированными тканями. Продолжительность жизни лейкоцитов 3-5 дней.

Функции лейкоцитов

Основная функция лейкоцитов заключается в защите организма от возбудителей заболеваний. Они захватывают проникшие в организм бактерии, разрушая их. Такой процесс называется фагоцитозом. Фагоцитированные бактерии перевариваются ферментами, вырабатываемыми лейкоцитами. Лейкоциты фагоцитируют бактерии до тех пор, пока накопившиеся продукты распада не убивают их.

Проникшие в организм микробы разрушают клетки органов, либо воздействуя на них непосредственно, либо образуя ядовитые вещества.

В пораженных участках происходит расширение кровеносных сосудов и повышение их проницаемости. Лейкоциты проникают через стенки капилляров, фагоцитируют инородные тела и разрушенные клетки.

Скопление мертвых клеток микроорганизмов, живых и погибших лейкоцитов образует густую желтоватую массу, называемую гноем.

Количество лейкоцитов в крови повышается при большинстве инфекционных заболеваний и служит показателем их тяжести. Поэтому подсчет количества лейкоцитов служит для оценки состояния больного и помогает поставить диагноз.

Тромбоциты

Тромбоциты

Тромбоциты – это красные кровяные пластинки, которые отвечают за гемостаз крови.

Тромбоциты походят из мегакариоцитов красного костного мозга. Замена тромбоцитов происходит в среднем каждые 10 дней. Новые клетки поступают в кровь, а старые разрушаются в селезенке. Новообразованные тромбоциты, уже вышедшие в кровеносное русло, имеют круглую или неправильную форму, в диаметре около 2-3 мкм. Кровяные пластинки лишены ядра, но содержат множество гранул.

При повреждении эндотелия, тромбоцит активируется, меняет форму, становится более плоским с несколькими отростками (псевдоподиями). Он прилипает к сосудистой стенке и с помощью псевдоподий соединяется (адгезирует) с другими клетками. Эта трансформация необходима для остановки кровотечения.

В норме количество тромбоцитов у здорового человека находится в пределах 180-320 г/л.

Увеличение популяции тромбоцитов называется тромбоцитозом, возникает при воспалительных процессах, в послеоперационном и посттравматическом периоде, при удалении селезенки.

Уменьшение тромбоцитов — тромбоцитопения — развивается на фоне снижения образования их в костном мозге или при повышенном разрушении (аутоиммунная тромбоцитопеническая пурпура).

В течении дня количество тромбоцитов также меняется (при нервном напряжении или сильной физической нагрузке, утром уменьшается, вечером увеличивается), но не выходит за пределы нормы. Часть клеток находится в депо — в селезенке, печени и костном мозге. При травмах, когда потребность в тромбоцитах возрастает, они выходят в кровеносное русло.

Функции тромбоцитов

  • Тромбоциты реагируют на проникновение в организм чужеродных агентов, способны к фагоцитозу вредоносных частиц, иммунных комплексов. Выделяют лизоцим, который разрушает оболочки некоторых бактерий.
  • Отвечают за первичный гемостаз (сосудисто-тромбоцитарный). При повреждении стенки сосуда тромбоциты разрушаются и выделяют вещества, которые ведут к образованию тромбоцитарного кровеостанавливающего сгустка.
  • Принимают участие во вторичном гемостазе вместе с плазменными факторами свертывания. К тромбоцитарным факторам относятся: тромбопластин, антигепариновый фактор, фибриноген тромбоцитов.
  • Отвечают за трофику сосудистой стенки, клетки эндотелия ежедневно поглощают до 40 г/л тромбоцитов. Также они содержат фактор роста, который усиливает регенерацию эндотелиоцитов.

Оцените, пожалуйста, статью. Мы старались:) (Пока оценок нет)
Загрузка…

Источник: https://animals-world.ru/plazma-i-formennye-elementy-krovi/

Ссылка на основную публикацию
Adblock
detector